android开发过程中经常会用到缓存,现在主流的app中图片等资源的缓存策略一般是分两级,一个是内存级别的缓存,一个是磁盘级别的缓存。
作为android系统的维护者google也开源了其缓存方案,LruCache和DiskLruCache。从android3.1开始LruCache已经作为android源码的一部分维护在android系统中,为了兼容以前的版本android的support-v4包也提供了LruCache的维护,如果App需要兼容到android3.1之前的版本就需要使用support-v4包中的LruCache,如果不需要兼容到android3.1则直接使用android源码中的LruCache即可,这里需要注意的是DiskLruCache并不是android源码的一部分。
在LruCache的源码中,关于LruCache有这样的一段介绍:
A cache that holds strong references to a limited number of values. Each time a value is accessed, it is moved to the head of a queue. When a value is added to a full cache, the value at the end of that queue is evicted and may become eligible for garbage collection.
cache对象通过一个强引用来访问内容。每次当一个item被访问到的时候,这个item就会被移动到一个队列的队首。当一个item被添加到已经满了的队列时,这个队列的队尾的item就会被移除。
其实这个实现的过程就是LruCache的缓存策略,即Lru-->(Least recent used)最少最近使用算法。
下面我们具体看一下LruCache的实现:
public class LruCache<K, V> { private final LinkedHashMap<K, V> map; /** Size of this cache in units. Not necessarily the number of elements. */ private int size; private int maxSize; private int putCount; private int createCount; private int evictionCount; private int hitCount; private int missCount; /** * @param maxSize for caches that do not override {@link #sizeOf}, this is * the maximum number of entries in the cache. For all other caches, * this is the maximum sum of the sizes of the entries in this cache. */ public LruCache(int maxSize) { if (maxSize <= 0) { throw new IllegalArgumentException("maxSize <= 0"); } this.maxSize = maxSize; this.map = new LinkedHashMap<K, V>(0, 0.75f, true); } /** * Sets the size of the cache. * * @param maxSize The new maximum size. */ public void resize(int maxSize) { if (maxSize <= 0) { throw new IllegalArgumentException("maxSize <= 0"); } synchronized (this) { this.maxSize = maxSize; } trimToSize(maxSize); } /** * Returns the value for {@code key} if it exists in the cache or can be * created by {@code #create}. If a value was returned, it is moved to the * head of the queue. This returns null if a value is not cached and cannot * be created. */ public final V get(K key) { if (key == null) { throw new NullPointerException("key == null"); } V mapValue; synchronized (this) { mapValue = map.get(key); if (mapValue != null) { hitCount++; return mapValue; } missCount++; } /* * Attempt to create a value. This may take a long time, and the map * may be different when create() returns. If a conflicting value was * added to the map while create() was working, we leave that value in * the map and release the created value. */ V createdValue = create(key); if (createdValue == null) { return null; } synchronized (this) { createCount++; mapValue = map.put(key, createdValue); if (mapValue != null) { // There was a conflict so undo that last put map.put(key, mapValue); } else { size += safeSizeOf(key, createdValue); } } if (mapValue != null) { entryRemoved(false, key, createdValue, mapValue); return mapValue; } else { trimToSize(maxSize); return createdValue; } } /** * Caches {@code value} for {@code key}. The value is moved to the head of * the queue. * * @return the previous value mapped by {@code key}. */ public final V put(K key, V value) { if (key == null || value == null) { throw new NullPointerException("key == null || value == null"); } V previous; synchronized (this) { putCount++; size += safeSizeOf(key, value); previous = map.put(key, value); if (previous != null) { size -= safeSizeOf(key, previous); } } if (previous != null) { entryRemoved(false, key, previous, value); } trimToSize(maxSize); return previous; } /** * Remove the eldest entries until the total of remaining entries is at or * below the requested size. * * @param maxSize the maximum size of the cache before returning. May be -1 * to evict even 0-sized elements. */ public void trimToSize(int maxSize) { while (true) { K key; V value; synchronized (this) { if (size < 0 || (map.isEmpty() && size != 0)) { throw new IllegalStateException(getClass().getName() + ".sizeOf() is reporting inconsistent results!"); } if (size <= maxSize) { break; } Map.Entry<K, V> toEvict = map.eldest(); if (toEvict == null) { break; } key = toEvict.getKey(); value = toEvict.getValue(); map.remove(key); size -= safeSizeOf(key, value); evictionCount++; } entryRemoved(true, key, value, null); } } /** * Removes the entry for {@code key} if it exists. * * @return the previous value mapped by {@code key}. */ public final V remove(K key) { if (key == null) { throw new NullPointerException("key == null"); } V previous; synchronized (this) { previous = map.remove(key); if (previous != null) { size -= safeSizeOf(key, previous); } } if (previous != null) { entryRemoved(false, key, previous, null); } return previous; } /** * Called for entries that have been evicted or removed. This method is * invoked when a value is evicted to make space, removed by a call to * {@link #remove}, or replaced by a call to {@link #put}. The default * implementation does nothing. * * <p>The method is called without synchronization: other threads may * access the cache while this method is executing. * * @param evicted true if the entry is being removed to make space, false * if the removal was caused by a {@link #put} or {@link #remove}. * @param newValue the new value for {@code key}, if it exists. If non-null, * this removal was caused by a {@link #put}. Otherwise it was caused by * an eviction or a {@link #remove}. */ protected void entryRemoved(boolean evicted, K key, V oldValue, V newValue) {} /** * Called after a cache miss to compute a value for the corresponding key. * Returns the computed value or null if no value can be computed. The * default implementation returns null. * * <p>The method is called without synchronization: other threads may * access the cache while this method is executing. * * <p>If a value for {@code key} exists in the cache when this method * returns, the created value will be released with {@link #entryRemoved} * and discarded. This can occur when multiple threads request the same key * at the same time (causing multiple values to be created), or when one * thread calls {@link #put} while another is creating a value for the same * key. */ protected V create(K key) { return null; } private int safeSizeOf(K key, V value) { int result = sizeOf(key, value); if (result < 0) { throw new IllegalStateException("Negative size: " + key + "=" + value); } return result; } /** * Returns the size of the entry for {@code key} and {@code value} in * user-defined units. The default implementation returns 1 so that size * is the number of entries and max size is the maximum number of entries. * * <p>An entry's size must not change while it is in the cache. */ protected int sizeOf(K key, V value) { return 1; } /** * Clear the cache, calling {@link #entryRemoved} on each removed entry. */ public final void evictAll() { trimToSize(-1); // -1 will evict 0-sized elements } /** * For caches that do not override {@link #sizeOf}, this returns the number * of entries in the cache. For all other caches, this returns the sum of * the sizes of the entries in this cache. */ public synchronized final int size() { return size; } /** * For caches that do not override {@link #sizeOf}, this returns the maximum * number of entries in the cache. For all other caches, this returns the * maximum sum of the sizes of the entries in this cache. */ public synchronized final int maxSize() { return maxSize; } /** * Returns the number of times {@link #get} returned a value that was * already present in the cache. */ public synchronized final int hitCount() { return hitCount; } /** * Returns the number of times {@link #get} returned null or required a new * value to be created. */ public synchronized final int missCount() { return missCount; } /** * Returns the number of times {@link #create(Object)} returned a value. */ public synchronized final int createCount() { return createCount; } /** * Returns the number of times {@link #put} was called. */ public synchronized final int putCount() { return putCount; } /** * Returns the number of values that have been evicted. */ public synchronized final int evictionCount() { return evictionCount; } /** * Returns a copy of the current contents of the cache, ordered from least * recently accessed to most recently accessed. */ public synchronized final Map<K, V> snapshot() { return new LinkedHashMap<K, V>(map); } @Override public synchronized final String toString() { int accesses = hitCount + missCount; int hitPercent = accesses != 0 ? (100 * hitCount / accesses) : 0; return String.format("LruCache[maxSize=%d,hits=%d,misses=%d,hitRate=%d%%]", maxSize, hitCount, missCount, hitPercent); } }
可以看到LruCache初始化的时候需要使用泛型,一般的我们这样初始化LruCache对象:
// 获取应用程序最大可用内存 int maxMemory = (int) Runtime.getRuntime().maxMemory(); int cacheSize = maxMemory / 8; // 设置图片缓存大小为程序最大可用内存的1/8 mMemoryCache = new LruCache<String, Bitmap>(cacheSize) { @Override protected int sizeOf(String key, Bitmap bitmap) { return bitmap.getByteCount(); } };
这里我们假设通过String作为key保存bitmap对象,同时需要传递一个int型的maxSize数值,主要用于设置LruCache链表的最大值。
查看其构造方法:
// 获取应用程序最大可用内存 int maxMemory = (int) Runtime.getRuntime().maxMemory(); int cacheSize = maxMemory / 8; // 设置图片缓存大小为程序最大可用内存的1/8 mMemoryCache = new LruCache<String, Bitmap>(cacheSize) { @Override protected int sizeOf(String key, Bitmap bitmap) { return bitmap.getByteCount(); } };
可以看到其主要的是初始化了maxSize和map链表对象。
然后查看put方法:
public final V put(K key, V value) { if (key == null || value == null) { throw new NullPointerException("key == null || value == null"); } V previous; synchronized (this) { putCount++; size += safeSizeOf(key, value); previous = map.put(key, value); if (previous != null) { size -= safeSizeOf(key, previous); } } if (previous != null) { entryRemoved(false, key, previous, value); } trimToSize(maxSize); return previous; }
需要传递两个参数:K和V,首先做了一下参数的判断,然后定义一个保存前一个Value值得临时变量,让putCount(put执行的次数)自增,让map的size大小自增。
需要注意的是这里的
previous = map.put(key, value);
我们看一下这里的map.put()的具体实现:
@Override public V put(K key, V value) { if (key == null) { return putValueForNullKey(value); } int hash = Collections.secondaryHash(key); HashMapEntry<K, V>[] tab = table; int index = hash & (tab.length - 1); for (HashMapEntry<K, V> e = tab[index]; e != null; e = e.next) { if (e.hash == hash && key.equals(e.key)) { preModify(e); V oldValue = e.value; e.value = value; return oldValue; } } // No entry for (non-null) key is present; create one modCount++; if (size++ > threshold) { tab = doubleCapacity(); index = hash & (tab.length - 1); } addNewEntry(key, value, hash, index); return null; }
将Key与Value的值压入Map中,这里判断了一下如果map中已经存在该key,value键值对,则不再压入map,并将Value值返回,否则将该键值对压入Map中,并返回null;
返回继续put方法:
previous = map.put(key, value); if (previous != null) { size -= safeSizeOf(key, previous); }
可以看到这里我们判断map.put方法的返回值是否为空,如果不为空的话,则说明我们刚刚并没有将我么你的键值对压入Map中,所以这里的size需要自减;
然后下面:
if (previous != null) { entryRemoved(false, key, previous, value); }
这里判断previous是否为空,如果不为空的话,调用了一个空的实现方法entryRemoved(),也就是说我们可以实现自己的LruCache并在添加缓存的时候若存在该缓存可以重写这个方法;
下面调用了trimToSize(maxSize)方法:
public void trimToSize(int maxSize) { while (true) { K key; V value; synchronized (this) { if (size < 0 || (map.isEmpty() && size != 0)) { throw new IllegalStateException(getClass().getName() + ".sizeOf() is reporting inconsistent results!"); } if (size <= maxSize) { break; } Map.Entry<K, V> toEvict = map.eldest(); if (toEvict == null) { break; } key = toEvict.getKey(); value = toEvict.getValue(); map.remove(key); size -= safeSizeOf(key, value); evictionCount++; } entryRemoved(true, key, value, null); } }
该方法主要是判断该Map的大小是否已经达到阙值,若达到,则将Map队尾的元素(最不常使用的元素)remove掉。
总结:
LruCache put方法,将键值对压入Map数据结构中,若这是Map的大小已经大于LruCache中定义的最大值,则将Map中最早压入的元素remove掉;
查看get方法:
public final V get(K key) { if (key == null) { throw new NullPointerException("key == null"); } V mapValue; synchronized (this) { mapValue = map.get(key); if (mapValue != null) { hitCount++; return mapValue; } missCount++; } /* * Attempt to create a value. This may take a long time, and the map * may be different when create() returns. If a conflicting value was * added to the map while create() was working, we leave that value in * the map and release the created value. */ V createdValue = create(key); if (createdValue == null) { return null; } synchronized (this) { createCount++; mapValue = map.put(key, createdValue); if (mapValue != null) { // There was a conflict so undo that last put map.put(key, mapValue); } else { size += safeSizeOf(key, createdValue); } } if (mapValue != null) { entryRemoved(false, key, createdValue, mapValue); return mapValue; } else { trimToSize(maxSize); return createdValue; } }
可以看到参数值为Key,简单的理解就是通过key值从map中取出Value值。
具体来说,判断map中是否含有key值value值,若存在,则hitCount(击中元素数量)自增,并返回Value值,若没有击中,则执行create(key)方法,这里看到create方法是一个空的实现方法,返回值为null,所以我们可以重写该方法,在调用get(key)的时候若没有找到value值,则自动创建一个value值并压入map中。
总结:
LruCache,内部使用Map保存内存级别的缓存
LruCache使用泛型可以设配各种类型
LruCache使用了Lru算法保存数据(最短最少使用least recent use)
LruCache只用使用put和get方法压入数据和取出数据